Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

ExperimentaI study on convective mixing for ThermaI Striping Phenomena; Mixing process among paralleI Triple-Jet and effect or discharged velocity

Kimura, Nobuyuki; Tokuhiro, Akira; Kamide, Hideki

JNC TN9400 2000-027, 181 Pages, 2000/02

JNC-TN9400-2000-027.pdf:10.28MB

A quantitative evaluation on thermal striping, in which temperature fluctuation due to convective mixing among jets causes thermal fatigue in structural components, is of importance for reactor safety. ln this study, a water experiment was performed using vertical and parallel triple jets, those are cold jet on center and hot jets on both side. The experimental parameter was discharged velocity of the triple-jet and local temperature and velocity were measured by ultrasound Doppler velocimetry and movable thermocouples. The objective is a quantification of the mixing process in the multiple-jet. Under isovelocity condition, the jets oscillated periodically and mixing among thejets was promoted by periodic oscillation. The periodic oscillation was dependent on the Strouhal number based on the discharged velocity. Under non-isovelocity condition, on the other hand, the jets did not oscillate periodically and mixing among the jets progressed more gentle compared with the case under isovelocity condition. The tempwrature fluctuation could be decomposed into coherent and random components using the phase averaging process. The rate of the coherent component in the temperature fluctuation increased and the rate of random component in temperature fluctuation decreased in proportion as the discharged velocity was increased.

JAEA Reports

Thermal striping; an experimental investigation on mixing of jets; Part III Remaining hydrodynamic results from initial experiments

Tokuhiro, Akira; Kimura, Nobuyuki;

JNC TN9400 2000-014, 86 Pages, 1999/06

JNC-TN9400-2000-014.pdf:11.72MB

Experiments were performed using the WAJECO facility to investigate the thermohydraulic mixing of multiple jets flowing out of a LMFBR core. Mixing is the root of the thermal striping problem. The multiple jets are typically at different velocities and temperatures and may induce thermal stresses upon components they impinge. In our study we modeled the mixing of three vertical jets, the central at a lower temperature than the two adjacent jets at equal temperatures. The jets are quasi-planar. The parameters were the average exit jet velocities (Uo,av) and the temperature difference between the "cold" and "hot" jets ($$Delta$$Thc=Thot-Tcold). Measurements of the liquid velocity, initially using laser Doppler velocimetry (LDV) and later ultrasound Doppler velocimetry (UDV), for both our reference single-jet and the triple-jet configuration, comprised Phase I of the experiments (up to 1994). Two reports (TN9410 96-181 and TN9410 96-296; in Japanese) reported on the hydraulic and heat tra

2 (Records 1-2 displayed on this page)
  • 1